In roller bearing for a given movement the roller bearing exhibit a change in pressure centre from its original position by one-half of its movement based on David J. Lee.
Awarded as the best online publication by CIDC
In roller bearing for a given movement the roller bearing exhibit a change in pressure centre from its original position by one-half of its movement based on David J. Lee.
For elastomeric bearing, the shear stiffness is an important parameter for design because it influences the force transfer between the bridge and its piers. In essence, elastomers are flexible under shear deformation but it is relatively stiff in compression. However, elastomeric bearings should not be used in tension.
Elastomeric bearing should be designed in serviceability limit state only. The cross sectional area is normally determined by the compressive stress limit under serviceability limit state. The shape factor, i.e. plan area of the laminar layer divided by area of perimeter free to bulge, affects the relation and the compressive load. In essence, higher capacity of bearings could be obtained with higher shape factor.
Some engineers may choose to design elastomeric bearings to sit on the piers without a connection. The bearing is held in place by frictional resistance only. Paraffin used in natural rubber would bleed out and result in significant decrease in friction.
For elastomeric bearing to function as a soft spring, the bearing should be allowed for bulging laterally and the compression stiffness can be increased by limiting the amount of lateral bulging. To increase the compression stiffness of elastomeric bearings, metal plates are inserted.
For elastomeric bearing, the vertical load is resisted by its compression while shear resistance of the bearing controls the horizontal movements.
The design of elastomeric bearings is based on striking a balance between the provision of sufficient stiffness to resist high compressive force and the flexibility to allow for translation and rotation movement.
Elastomeric bearing is normally classified into two types: fixed and free. For fixed types, the bridge deck is permitted only to rotate and the horizontal movements of the deck are restrained. On the other hand, for free types the deck can move horizontally and rotate. To achieve fixity, dowels are adopted to pass from bridge deck to abutment.
PTFE is a flurocarbon polymer which possesses good chemical resistance and can function in a wide range of temperature. The most important characteristic of this material is its low coefficient of friction. PTFE has the lowest coefficients of static and dynamic friction of any solid with absence of stick-slip movement. The coefficient of friction is found to decrease with an increase in compressive stress. However, PTFE do have some demerits like high thermal expansion and low compressive strength.
The choice of sliding surface of bearings is of vital importance because the sliding surfaces generate frictional forces which are exerted on the bearings and substructure of the bridge. For instance, PTFE and lubricated bronze are commonly choices of sliding surfaces for bearings. PTFE is a flurocarbon polymer which possesses good chemical resistance and can function in a wide range of temperature. The most important characteristic of this material is its low coefficient of friction. PTFE has the lowest coefficients of static and dynamic friction of any solid with absence of stick-slip movement (David J. Lee). The coefficient of friction is found to decrease with an increase in compressive stress. However, PTFE do have some demerits like high thermal expansion and low compressive strength.
To specify space requirements, most pot bearings are designed for high contact pressures with small contact area with bridges. This also enhances lower friction values. Under the free state, most elastomers in pot bearings can hardly sustain this high pressure and hence they are most contained to prevent overstraining.