Awarded as the best online publication by CIDC

Hydraulics

Fluid flow in pipes

Laminar Flow

Its is a flow in which the fluid particles move in parallel layers in a single direction.Due to the parabolic velocity distribution in laminar flow, a shearing stress is developed. As this shearing stress increases, the viscous forces become unable to damp out disturbances, and turbulent flow results. The region of change is dependent on the fluid velocity, density, and viscosity and the size of the conduit.

Read More

Similitude for physical models

A physical model is a system whose operation can be used to predict the characteristics of a similar system, or prototype, usually more complex or built to a much larger scale.”A model can be either smaller or bigger than the real construction.It is believed that model is always smaller but that is not true always for example if we want to make a very small computer chip then to illustrate its function properly the model is made bigger as compared to the original chip. Read More

Bernoulli Equation

For fluid energy, the law of conservation of energy is represented by the Bernoulli equation(for ideal fluid only):

Z1+p1/w+V12/2g=Z2+p2/w+V22/2g

where
Read More

Viscosity

Viscosity of a fluid, also called the coefficient of viscosity, absolute viscosity, or dynamic viscosity, is a measure of its resistance to flow. It is expressed as the ratio of the tangential shearing stresses between flow layers to the rate of change of velocity with depth

Read More

Capillary Action

Viscosity of a fluid, also called the coefficient of viscosity, absolute viscosity, or dynamic viscosity, is a measure of its resistance to flow. Read More

Ask a question