Awarded as the best online publication by CIDC

Marine Works

In connecting fenders to pier structures, should single lock nuts or double lock nuts be used?

In many pier structures the connection of fenders to piers is achieved by using single lock nuts. However, they do not perform well because some timber fenders loosen more easily when subject to vibrating loads due to berthing, wave and tidal actions. To solve this problem, double lock nuts should be adopted as they prove to function satisfactory in other structural elements which are subject to frequent vibration loads.

Read More

What is the difference between weight chain, shear chain and tension chain in fender system?

The weight chain is used to sustain the weight of face and frontal panel. Shear chain help protect the fender from damage while the fender is in shear deformation and they are orientated at 20 – 30° to the horizontal. Tension chain serves to guard the fender against damage when the fender is under compression.

Read More

What is the difference in application of surface-protecting fenders and energy-absorbing fenders?

Surface-protecting fenders are fenders that induce high reaction forces to berthing structures for the energy absorbed while energy-absorbing fenders are fenders which transmit low impact to berthing structures for the energy absorbed (Carl A. Thoresen (1988)).

Read More

What is heeling during vessel berthing?

When a vessel berths on a fender system at a pier, the point of contact of the berthing ship may be above or below the centre of gravity of the ship. During the berthing operation, some kinetic energy is dissipated in work done to heel the ship i.e. the work done to bring the ship an angle of heel.

Read More

Why is sulphate-resisting cement not used in marine concrete?

The main components of Portland cement are tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium aluminoferrite. In sulphate-resisting cement, it contains a low amount of tricalcium aluminate in order to avoid sulphate attack. Otherwise, tricalcium aluminate would react with sulphates to form calcium sulphoaluminate and gypsum that cause expansion and crack the concrete structure.

Read More

Should dolphins be designed in a rigid manner, i.e. resting on several raking piles?

In designing dolphins, they are normally supported on a system of three to four raking piles. This in essence is a rigid structure and exhibits little flexibility e.g. movement against impact and berthing loads by vessels. In fact, this kind of design may not be desirable in terms of maintenance because the dolphins are readily susceptible to damage by high berthing vessels.

Read More

Shall a layer of wearing course or additional thickness be designed on the surface of piers?

In the design of piers, consideration should be given to the effect of wearing action caused by passengers, other traffics and even sometimes vehicles. In maritime environment, the durability and integrity of concrete is detrimental to the servicing life of piers because it acts an essential barrier to chloride attack.

Read More

Why are high and narrow beams not desirable in concrete piers?

Based on past experience in other countries (Carl A. Thoresen (1988)), high and narrow beams after several years of construction showed signs of serious deterioration at the bottom of the beams. However, the deterioration of pier slabs was not significant when compared with that of the deep beams.

Read More

Why is shallow bedrock condition unfavorable for open berth piers?

The most severe load on piers generally is the horizontal load due to berthing of large vessels. Since the widths of open berth piers are relatively small so that they provides a short lever arm to counteract the moment induced by berthing loads. Moreover, the dead load of open berth piers are normally quite light and therefore the resisting moment provided by the dead load of pier structures may not be sufficient to counteract the moment generated by berthing loads.

Read More

Why is it desirable to select fenders with low reaction force?

It is always in the interest of engineers to select fenders with high energy absorption with low reaction force. The reaction force is an important factor in the design of quay walls because sufficient savings could be resulted from low reaction force exerted by fenders.

Read More

Ask a question