Awarded as the best online publication by CIDC

Steelworks

Which type of bar reinforcement is more corrosion resistant, epoxy-coated bars, stainless steel bars or galvanized bars?

Based on the experiment conducted by the Building Research Establishment, it was shown that the corrosion resistance of galvanized steel was the worst among the three types of bar reinforcement. For galvanized steel bars, corrosion started to occur when a certain chloride content in concrete (i.e. 0.4% by cement weight) was exceeded. However, for epoxy-coated bars, they extended the time taken for cracking to occur when compared with galvanized steel bars.

Read More

Tying wires for reinforcement adjacent to and above Class F4 and F5 finishes should be stainless steel wires. Why?

If plain steel tying wires are used for reinforcement adjacent to Class F4 and F5 finishes, it poses the problem of rust staining which may impair the appearance of exposed concrete surfaces. The rate of corrosion of plain steel tying wires is similar to normal steel reinforcement.

Read More

What is the effect of rusting on steel reinforcement?

The corrosion of steel reinforcement inside a concrete structure is undesirable in the following ways:

(i) The presence of rust impairs the bond strength of deformed reinforcement because corrosion occurs at the raised ribs and fills the gap between ribs, thus evening out the original deformed shape. In essence, the bond between concrete and deformed bars originates from the mechanical lock between the raised ribs and concrete. The reduction of mechanical locks by corrosion results in the decline in bond strength with concrete.

Read More

For column reinforcements, why is helical reinforcement sometimes designed instead of normal links?

The use of links for column design in Britain is very popular. However, in U.S.A. engineers tend to use helical reinforcement instead of normal links because helical reinforcement has the potential advantage of protecting columns/piles against seismic loads.

Read More

Why does the presence of tension reinforcement lead to increasing deflection in concrete structures?

In BS8110 a modification factor is applied to span/depth ratio to take into account the effect of tension reinforcement. In fact, deflection of concrete structure is affected by the stress and the amount of tension reinforcement.

To illustrate their relationship, let’s consider the following equation relating to beam curvature:

Read More

What is the purpose of setting minimum amount of longitudinal steel areas for columns?

In some design codes it specifies that the area of longitudinal steel reinforcement should be not less than a certain percentage of the sectional area of column. Firstly, the limitation of steel ratio for columns helps to guard against potential failure in tension. Tension may be induced in columns during the design life of the concrete structures. For instance, tension is induced in columns in case there is uneven settlement of the building foundation, or upper floors above the column are totally unloaded while the floors below the column are severely loaded. Secondly, owing to the effect of creep and shrinkage, there will be a redistribution of loads between concrete and steel reinforcement. Consequently, the steel reinforcement may yield easily in case a lower limit of steel area is not established.

Read More

Why are longer tension lap lengths designed at the corners and at the top of concrete structures?

In BS8110 for reinforced concrete design, it states that longer tension lap lengths have to be provided at the top of concrete members. The reason behind this is that the amount of compaction of the top of concrete members during concrete placing is more likely to be less than the remaining concrete sections. Moreover, owing to the possible effect of segregation and bleeding, the upper layer of concrete section tends to be of lower strength when compared with other locations.

Read More

Does longitudinal steel serve as an enhancement of shear strength?

In addition to shear resistance provided by shear reinforcement, shear forces in a concrete section is also resisted by concrete compression force (compressive forces enhances higher shear strength), dowel actions and aggregate interlocking. The presence of longitudinal steel contributes to the enhancement of shear strength of concrete section in the following ways:

Read More

Why does lap length generally greater than anchorage length?

In some structural codes, the lap length of reinforcement is simplified to be a certain percentage (e.g. 25%) higher than the anchorage length. This requirement is to cater for stress concentrations at the end of lap bars.

Read More

Why is tension anchorage length generally longer than compression anchorage length?

Tension anchorage length of steel reinforcement in concrete depends on bond strength. When steel reinforcement is anchored to concrete and is subjected to compressive forces, the resistance is provided by the bond strength between concrete and steel and the bearing pressure at the reinforcement end.

Read More

Ask a question