Awarded as the best online publication by CIDC

Concrete Mix Design As Per Indian Standard Code

Concrete Mix Design

Introduction

The process of selecting suitable ingredients of concrete and determining their relative amounts with the objective of producing a concrete of the required, strength, durability, and workability as economically as possible, is termed the concrete mix design. The proportioning of ingredient of concrete is governed by the required performance of concrete in 2 states, namely the plastic and the hardened states. If the plastic concrete is not workable, it cannot be properly placed and compacted. The property of workability, therefore, becomes of vital importance.

The compressive strength of hardened concrete which is generally considered to be an index of its other properties, depends upon many factors, e.g. quality and quantity of cement, water and aggregates; batching and mixing; placing, compaction and curing. The cost of concrete is made up of the cost of materials, plant and labour. The variations in the cost of materials arise from the fact that the cement is several times costly than the aggregate, thus the aim is to produce as lean a mix as possible. From technical point of view the rich mixes may lead to high shrinkage and cracking in the structural concrete, and to evolution of high heat of hydration in mass concrete which may cause cracking.

The actual cost of concrete is related to the cost of materials required for producing a minimum mean strength called characteristic strength that is specified by the designer of the structure. This depends on the quality control measures, but there is no doubt that the quality control adds to the cost of concrete. The extent of quality control is often an economic compromise, and depends on the size and type of job. The cost of labour depends on the workability of mix, e.g., a concrete mix of inadequate workability may result in a high cost of labour to obtain a degree of compaction with available equipment.

Requirements of concrete mix design

The requirements which form the basis of selection and proportioning of mix ingredients are :

a ) The minimum compressive strength required from structural consideration

b) The adequate workability necessary for full compaction with the compacting equipment available.

c) Maximum water-cement ratio and/or maximum cement content to give adequate durability for the particular site conditions

d) Maximum cement content to avoid shrinkage cracking due to temperature cycle in mass concrete.

Types of Mixes

1. Nominal Mixes

Advertisements

In the past the specifications for concrete prescribed the proportions of cement, fine and coarse aggregates. These mixes of fixed cement-aggregate ratio which ensures adequate strength are termed nominal mixes. These offer simplicity and under normal circumstances, have a margin of strength above that specified. However, due to the variability of mix ingredients the nominal concrete for a given workability varies widely in strength.

2. Standard mixes

The nominal mixes of fixed cement-aggregate ratio (by volume) vary widely in strength and may result in under- or over-rich mixes. For this reason, the minimum compressive strength has been included in many specifications. These mixes are termed standard mixes.

IS 456-2000 has designated the concrete mixes into a number of grades as M10, M15, M20, M25, M30, M35 and M40. In this designation the letter M refers to the mix and the number to the specified 28 day cube strength of mix in N/mm2. The mixes of grades M10, M15, M20 and M25 correspond approximately to the mix proportions (1:3:6), (1:2:4), (1:1.5:3) and (1:1:2) respectively.

3. Designed Mixes

In these mixes the performance of the concrete is specified by the designer but the mix proportions are determined by the producer of concrete, except that the minimum cement content can be laid down. This is most rational approach to the selection of mix proportions with specific materials in mind possessing more or less unique characteristics. The approach results in the production of concrete with the appropriate properties most economically. However, the designed mix does not serve as a guide since this does not guarantee the correct mix proportions for the prescribed performance.

For the concrete with undemanding performance nominal or standard mixes (prescribed in the codes by quantities of dry ingredients per cubic meter and by slump) may be used only for very small jobs, when the 28-day strength of concrete does not exceed 30 N/mm2. No control testing is necessary reliance being placed on the masses of the ingredients.

Factors affecting the choice of mix proportions

The various factors affecting the mix design are:

1. Compressive strength

It is one of the most important properties of concrete and influences many other describable properties of the hardened concrete. The mean compressive strength required at a specific age, usually 28 days, determines the nominal water-cement ratio of the mix. The other factor affecting the strength of concrete at a given age and cured at a prescribed temperature is the degree of compaction. According to Abraham’s law the strength of fully compacted concrete is inversely proportional to the water-cement ratio.

Advertisements

2. Workability

The degree of workability required depends on three factors. These are the size of the section to be concreted, the amount of reinforcement, and the method of compaction to be used. For the narrow and complicated section with numerous corners or inaccessible parts, the concrete must have a high workability so that full compaction can be achieved with a reasonable amount of effort. This also applies to the embedded steel sections. The desired workability depends on the compacting equipment available at the site.

3. Durability

The durability of concrete is its resistance to the aggressive environmental conditions. High strength concrete is generally more durable than low strength concrete. In the situations when the high strength is not necessary but the conditions of exposure are such that high durability is vital, the durability requirement will determine the water-cement ratio to be used.

4. Maximum nominal size of aggregate

In general, larger the maximum size of aggregate, smaller is the cement requirement for a particular water-cement ratio, because the workability of concrete increases with increase in maximum size of the aggregate. However, the compressive strength tends to increase with the decrease in size of aggregate.

IS 456:2000 and IS 1343:1980 recommend that the nominal size of the aggregate should be as large as possible.

5. Grading and type of aggregate

The grading of aggregate influences the mix proportions for a specified workability and water-cement ratio. Coarser the grading leaner will be mix which can be used. Very lean mix is not desirable since it does not contain enough finer material to make the concrete cohesive.

The type of aggregate influences strongly the aggregate-cement ratio for the desired workability and stipulated water cement ratio. An important feature of a satisfactory aggregate is the uniformity of the grading which can be achieved by mixing different size fractions.

6. Quality Control

The degree of control can be estimated statistically by the variations in test results. The variation in strength results from the variations in the properties of the mix ingredients and lack of control of accuracy in batching, mixing, placing, curing and testing. The lower the difference between the mean and minimum strengths of the mix lower will be the cement-content required. The factor controlling this difference is termed as quality control.

Mix Proportion designations

The common method of expressing the proportions of ingredients of a concrete mix is in the terms of parts or ratios of cement, fine and coarse aggregates. For e.g., a concrete mix of proportions 1:2:4 means that cement, fine and coarse aggregate are in the ratio 1:2:4 or the mix contains one part of cement, two parts of fine aggregate and four parts of coarse aggregate. The proportions are either by volume or by mass. The water-cement ratio is usually expressed in mass

Factors to be considered for mix design

ð The grade designation giving the characteristic strength requirement of concrete.

ð The type of cement influences the rate of development of compressive strength of concrete.

ð Maximum nominal size of aggregates to be used in concrete may be as large as possible within the limits prescribed by IS 456:2000.

ð The cement content is to be limited from shrinkage, cracking and creep.

ð The workability of concrete for satisfactory placing and compaction is related to the size and shape of section, quantity and spacing of reinforcement and technique used for transportation, placing and compaction.

Procedure

1. Determine the mean target strength ft from the specified characteristic compressive strength at 28-day fck and the level of quality control.

ft = fck + 1.65 S

where S is the standard deviation obtained from the Table of approximate contents given after the design mix.

2. Obtain the water cement ratio for the desired mean target using the emperical relationship between compressive strength and water cement ratio so chosen is checked against the limiting water cement ratio. The water cement ratio so chosen is checked against the limiting water cement ratio for the requirements of durability given in table and adopts the lower of the two values.

3. Estimate the amount of entrapped air for maximum nominal size of the aggregate from the table.

4. Select the water content, for the required workability and maximum size of aggregates (for aggregates in saturated surface dry condition) from table.

5. Determine the percentage of fine aggregate in total aggregate by absolute volume from table for the concrete using crushed coarse aggregate.

6. Adjust the values of water content and percentage of sand as provided in the table for any difference in workability, water cement ratio, grading of fine aggregate and for rounded aggregate the values are given in table.

7. Calculate the cement content form the water-cement ratio and the final water content as arrived after adjustment. Check the cement against the minimum cement content from the requirements of the durability, and greater of the two values is adopted.

8. From the quantities of water and cement per unit volume of concrete and the percentage of sand already determined in steps 6 and 7 above, calculate the content of coarse and fine aggregates per unit volume of concrete from the following relations:

formula-for-concrete-mix-design

where V = absolute volume of concrete

= gross volume (1m3) minus the volume of entrapped air

Sc = specific gravity of cement

W = Mass of water per cubic metre of concrete, kg

C = mass of cement per cubic metre of concrete, kg

p = ratio of fine aggregate to total aggregate by absolute volume

fa, Ca = total masses of fine and coarse aggregates, per cubic metre of concrete, respectively, kg, and

Sfa, Sca = specific gravities of saturated surface dry fine and coarse aggregates, respectively

Advertisements

9. Determine the concrete mix proportions for the first trial mix.

10. Prepare the concrete using the calculated proportions and cast three cubes of 150 mm size and test them wet after 28-days moist curing and check for the strength.

11. Prepare trial mixes with suitable adjustments till the final mix proportions are arrived at.

Share this post

Kanwarjot Singh

Kanwarjot Singh is the founder of Civil Engineering Portal, a leading civil engineering website which has been awarded as the best online publication by CIDC. He did his BE civil from Thapar University, Patiala and has been working on this website with his team of Civil Engineers.

If you have a query, you can ask a question here.

1,015 comments on "Concrete Mix Design As Per Indian Standard Code"

Rajendra.B says:

Dear sir,
1)please sir send me the all volume formula of concrete,
2) plz tell me compressive Strength of M25,M20 grade concrete for 7days & 28days …For RDC.
3)Please send me the properties of mix design.
4)How many cube we will cast in 185 cum concreting/footing and why?
5)i Need mix design detail m10, m15, m20 , m25 , m30 m35, m40. the weights of material for one bag.

anil says:

Dear sir plz tell me compressive Strength of M25,M20,M30,M35 (As Per PPC Cement)grade concrete for 7days & 28days …For RMC.mi

dillibabu says:

Pls send the mix design for M5, M10 for 8″ & 4″ solid & hollow Blocks

M A QAVI says:

sir please send me the mix desing of hollow block and solid block

tiku says:

respected sir please send me design mix for M25 CONCRETE (for ppc) For construction of over head tank (12 kl0

ghanshyam mistry says:

Can only cement increase in the mix of concrete is sufficient for increse strength of concrete?
Also what extend we increse cement in the concrete mix of single design mix and same ingredient which give increse in concrete strength?

Himanshu Sinha says:

quality and quantity of aggregates determines the strength of concrete. Cement is just a binding material.
-H.S.

cFakhar says:

I want an A-Z building design guide. Pl. help me.

sanket shah says:

Can anyone tell me the minimum cement content required for the design of paver block?where it is written?

jamal uddin says:

please sir, send me the method of pile load test and also what will be final result of pile load test .

sudhindra channagiri says:

Sir, I have got done mix design for M25 mix with samples of coarse & fine aggregates from approved quarry. The brand of cement sent for mix design was ZUARI OPC 43 grade. Now I want to go in for concreting of footings , raft etc with materials from approved quarry except that the brand of cement will be ACC , OPC 43 grade instead of ZUARI , OPC 43 grade. Should I go ahead with the mix design or shold I get the mix design done for ACC brand cement again? Pl reply as early as possible.

P.R.K.Durga Prasad, says:

Sir, Please send me the methods of mix design for M5,10,20 ,30 using 43 grade cement

Punit Gupta says:

You need to get the new design mix approved for ACC cement

CH.SURYARAO says:

Dear sir,
1)please sir send me the all volume formula of concrete,
2) plz tell me compressive Strength of M25,M20 grade concrete for 7days & 28days …For RDC.
3)Please send me the properties of mix design.
4)How many cube we will cast in 185 cum concreting/footing and why?
5)i Need mix design detail m10, m15, m20 , m25 , m30 m35, m40. the weights of material for one bag.

manoj chaudhary says:

please tell me about of cement bag size

R.Vignesh kumar says:

Sir,
I need the mix design for 4″, 6″,8″ solid and hollow blocks .

Am an engineering student ,so it will be helpful for me in my project work .
And i need the mix design for M40 grade of i type paving tile of 80mm thickness.

amit naik says:

plz give me list of is code concrete connected

op verma says:

sir, pl tell me min. & max. the compressive strength of design mix (RMC) grade m-15,m-20,m-25,m-30,m-35 for 7 days & 28 days

mehabub says:

Hallo
The compressive strength of 7 days is 2/3 of targeted mean strength.
The compressive strength of 28 days is targeted mean strength + or – 4N/MM2

sanjit goala says:

good notes

Thomson says:

Sir plz sent me how many percentage of aggrigates contain in 1 metre cube

Er.Arvindhkumar.B says:

by adding addmixtrs like alluminiyame vvire cut pieces in 0.5 or o.4 mm thickness….. v can reduce the cement quantity….
it gains more strength i think soo……

Onyekwelu Okonta says:

sir,
1), could you please tell me the standard deviation factor for a general concrete mix design especially for concrete jbs that has not been made before as to get the total numbers deviations fom the target strength.
2), what strength is expected of a concrete mix of M27, is 28N/mm2 too bad for this?.

sanjeev mann says:

Sir,

Please send me the all grade details that where we will use example for columns for beams for sherawall, for slab , pls send me as soon as as possible.

thanks,

sanjeev

s r design says:

dear sir,
which ratio (concrete) is use in burj khalifa?
what is singly beam, dubly beam & tee beam?
where use singly beam, dubly beam & tee beam?
what use better in residensial hous? beam/gurder?
hoe to find steel for 10th floor building?

Mahesh Chandra says:

1. You can use the M35 conmcrete in the burj Khalifa.
2. The singly reinforced beam is the beam having reinforcement in tension zone i.e in bottam.
3. The doubly reinforced beam is the beam having reinforcement in tension as well as in compression zone i.e top and bottal.

ananthi says:

singly beam means the reinforcement should be provide one side.(top r bottom),dubly means reinforcement provide both top & bottom.Top of the beam is caled compresion ,botom is called tension area.

Leave a Reply

Your email address will not be published. Required fields are marked *

Ask a question